
Citation: Perrone, M.R.; Romano, S.;

De Maria, G.; Tundo, P.; Bruno, A.R.;

Tagliaferro, L.; Maffia, M.; Fragola, M.

Compositional Data Analysis of 16S

rRNA Gene Sequencing Results from

Hospital Airborne Microbiome

Samples. Int. J. Environ. Res. Public

Health 2022, 19, 10107. https://

doi.org/10.3390/ijerph191610107

Academic Editors: Jiayu Li, Xilei Dai

and Junjie Liu

Received: 1 August 2022

Accepted: 6 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Compositional Data Analysis of 16S rRNA Gene Sequencing
Results from Hospital Airborne Microbiome Samples
Maria Rita Perrone 1, Salvatore Romano 1 , Giuseppe De Maria 2, Paolo Tundo 2, Anna Rita Bruno 2,
Luigi Tagliaferro 2 , Michele Maffia 3 and Mattia Fragola 1,*

1 Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
2 Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
3 Department of Biological and Environmental Sciences and Technologies, University of Salento,

73100 Lecce, Italy
* Correspondence: mattia.fragola@unisalento.it

Abstract: The compositional analysis of 16S rRNA gene sequencing datasets is applied to characterize
the bacterial structure of airborne samples collected in different locations of a hospital infection
disease department hosting COVID-19 patients, as well as to investigate the relationships among
bacterial taxa at the genus and species level. The exploration of the centered log-ratio transformed
data by the principal component analysis via the singular value decomposition has shown that the
collected samples segregated with an observable separation depending on the monitoring location.
More specifically, two main sample clusters were identified with regards to bacterial genera (species),
consisting of samples mostly collected in rooms with and without COVID-19 patients, respectively.
Human pathogenic genera (species) associated with nosocomial infections were mostly found in
samples from areas hosting patients, while non-pathogenic genera (species) mainly isolated from soil
were detected in the other samples. Propionibacterium acnes, Staphylococcus pettenkoferi, Corynebacterium
tuberculostearicum, and jeikeium were the main pathogenic species detected in COVID-19 patients’
rooms. Samples from these locations were on average characterized by smaller richness/evenness
and diversity than the other ones, both at the genus and species level. Finally, the ρmetrics revealed
that pairwise positive associations occurred either between pathogenic or non-pathogenic taxa.

Keywords: 16S rRNA gene sequencing; Aitchison distance; CLR transformation; singular value
decomposition; alpha-diversity; airborne microbiome; compositional data; ρmetrics

1. Introduction

The identification of the most abundant taxa in tested environments represents the
main goal of most studies based on microbial communities characterized by DNA sequenc-
ing, as the 16S rRNA gene sequencing. Nevertheless, the choice of the best approach to
identify which taxa significantly differ in relative abundance between groups of samples is
still the subject of controversial debate [1–3]. The compositional nature of microbiome data
from high-throughput sequencing makes them challenging to explore [4,5], since it does not
allow using traditional statistical procedures [1,6]. Aitchison [7] identified compositional
data as the ones “that contain information about the relationships between the parts”, while
Gloor et al. [2] defined them as those “that are naturally described as proportions or proba-
bilities, or with a constant or irrelevant sum” and showed that the use of standard statistical
approaches to analyze compositional data could generate only uninterpretable results.
Aitchison realized that each compositional dataset could be rephrased in terms of ratios of
components and developed some basic theories and different methods, procedures, and
tools for the compositional data analysis [8,9]. The ratio transformation of data represented
the starting point for all the other developed compositional approaches since these ratios
are independently the same whether the data are counts or proportions. The logarithm of
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these ratios (defined as log-ratio transformation) generally represented the most common
approach accepted by statisticians and many researchers in different fields (e.g., [10,11]).
The main advantage of log-ratio transformations is that the problem of a constrained sam-
ple space of the compositional data can be removed, and in addition, data are projected into
multivariate real space, which allows using all available classic multivariate approaches
to examine compositional datasets (e.g., [12]). Sophisticated data analysis concepts and
methodologies were developed and used to investigate the compositional microbiome
data from high-throughput sequencing results (e.g., [6,12–15]). In addition to showing
that the analysis of compositional data by traditional methods could be misleading and
unpredictable, Gloor et al. [2] proposed a compositional approach workflow. The first step
of the analysis workflow is represented by a centered log-ratio transformation (CLR) of the
input compositional dataset from high-throughput sequencing [2]. Then, they proposed the
Aitchison distance (i.e., the Euclidean distance between samples after CLR transformation
of OTUs/reads) as a compositional replacement for distance determination to be used for
clustering and ordination techniques. Gloor et al. [2] explained that the Aitchison distance
is superior to the most common Bray–Curtis dissimilarity metrics, since it is more stable
to aggregate the data, in addition to be a true linear distance [16]. Robinson et al. [17]
investigated the bacterial beta-diversity for both soil and airborne samples in the southern
Adelaide Parklands (Australia) by using ordination plots of Aitchison distances based
on CLR-transformations of OTU abundances obtained from 16S rRNA gene sequencing
datasets. The third step of the compositional analysis workflow [2] is represented by the
variance-based compositional principal component (PCA) biplot [18], as replacement for
beta-diversity exploration of microbiome data. The main reason of this last selection is
that this kind of PCA biplot can be used to identify the relationships among inter-OTU
variance and sample distance [13]. In addition, compositional PCA biplots present many
benefits over the principal coordinate analysis (PCoA) plots for beta-diversity analysis.
Firstly, the results obtained from compositional PCA biplots are more stable than the ones
from the corresponding PCoA starting from the same dataset [19]. Secondly, PCA plots
can be more reproducible. More specifically, Gloor et al. [2] suggested the compositional
PCA biplot made by a singular value decomposition (SVD) of the CLR-transformed data
as the first exploratory tool to be used to examine the dataset [18]. In fact, the SVD-PCA
biplot is generally applied to obtain the best least-square representation of the data matrix
in a low-dimensional space, showing the Euclidean distances between samples in addition
to the variances and correlations of the analyzed variables [20]. Grześkowiak et al. [21]
estimated the principal components for their dataset of pig gut microbiota via singular
value decomposition of the data matrix as defined by prcomp method under the R package
stats. Many previous studies used the compositional SVD-PCA biplot to analyze their
microbiome data (e.g., [15,20,22]). Gloor et al. [2] and Xia et al. [4] have also provided a
detailed explanation on the inappropriateness of the traditional correlation parameters,
such as the Spearman and Pearson coefficients in compositional datasets, because of the
likely occurrence of spurious correlations, negative correlation biases, false positive corre-
lations, and instability to subset the data. Therefore, new statistically rigorous methods,
such as SPARCC [23] and SPieCeasi [24], were developed to perform a correlation analysis
for microbiome datasets in case of a sparse data matrix. Gloor et al. [2] suggested the use
of the ϕ [25] or the ρ [26] metrics when the initial microbiome dataset is represented by a
non-sparse matrix. These last metrics describe the strength of the proportionality between
two variables and do not change whether applied to relative values or to their absolute
equivalent values [4]. In more detail, ϕ and ρmetrics represent the scale log-ratio variance
by the variance of one or both constituent parts [27]. Skinnider et al. [28] successfully
proved the reliability of both parameters for genomics studies. The R package propr allows
the calculation of both ϕ and ρmetrics, in addition to an expected value of the ρ coefficient,
generally denoted as E(ρ), which is also valid for sparse data matrix [29]. This expected
value E(ρ) assumes a value of 1 if two taxa present exactly constant ratios in the microbiome
dataset. Bian et al. [19] determined the E(ρ) value to identify clusters of associated OTUs in
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their dataset from the analysis of 16S rRNA gene sequencing results for the gut microbiota
of a cross-sectional cohort of more than 1000 healthy Chinese individuals. Note that both ϕ
and ρmetrics are sub-compositionally coherent: both these metrics assume the same value
for pairs of taxa in common if the whole dataset is analyzed or any subset in the dataset
is analyzed [2]. Therefore, the definition of an ideal and common methodology for the
characterization of compositional datasets is still an open research challenge, as proved by
several recent works (e.g., [30–35]).

In this study, the 16S rRNA gene sequencing results from airborne bioaerosol samples
collected at Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been used to
apply the compositional analysis workflow suggested by Gloor et al. [2]. For this purpose,
we used the CLR transformation as normalization procedure, the Aitchison distance as
basis for data ordination, the compositional SVD-PCA biplot for data clustering, and the
ρmetrics for data correlation/proportionality. The analyzed 16S rRNA gene sequencing
dataset was extracted from airborne samples collected at different locations of the Infectious
Disease (ID) Department of Santa Caterina Novella Hospital when COVID-19 patients
were hosted. The airborne bacterial community profiles up to the species level, the main
relationships among taxa, and the ones associated with different monitoring locations have
been analyzed by the selected compositional analysis approach.

2. Materials and Methods
2.1. Collection Methodology for Bioaerosol Samples

The lightweight and portable ACD-200 Bobcat, which is a dry-filter and high-volume
air sampler (InnovaPrep, Drexel, MO, USA), was used to collect the airborne aerosol and
bioaerosol samples analyzed in this study. The device collection medium for ACD-200
Bobcat is a sterile 52-mm-diameter electret filter consisting of electrostatically charged
dielectric polymer fibers [36]. Electret filters allow a high collection efficiency of airborne
components, including viruses, bacteria, pollen, moulds, and fungal spores, as well as
nonbiological particles [37]. The ACD-200 Bobcat allows collecting airborne components
from 0.1 to about 10 µm in size with minimal pressure drops, high sampling rates, and long
sampling periods [38]. The air sampling occurred at a height of about 50 cm above the floor
to minimize contamination, following the recommendations by King et al. [39]. We used
sterile latex gloves to insert each electret filter equipped with a filter holder cup (contained
in a sterilized box before its use) into the ACD-200 Bobcat air sampler. Once sampling was
complete, the filter-holder-cup system was removed from the collector with gloved hands,
and a sterile canister containing an elution fluid was inverted over the filter-cup system.
More specifically, the sterilized single-use canister contained a wet foam carbon-compressed
elution kit patented by the Bobcat’s manufacturer and composed of water, a pH buffer,
and a low concentration surfactant (less than 0.1%) infused with carbon dioxide (0.075%
Tween 20/PBS). The elution foam is released from the canister through the filter passing
through its interstitial spaces to efficiently extract all captured components in 6–7 mL
liquid. In fact, the foam immediately collapses back to a liquid phase in the sampling cup,
making it available for the following sample processing and analysis phases. More details
on the sampling methodology and the main features of ACD-200 Bobcat device can be
found in Bøifot et al. [40]. Several recent studies used ACD-200 Bobcat to collect bioaerosol
samples in different sampling conditions: vertically distributed across the troposphere [41],
near open wastewater canals [42,43], and in farms with swine housing [44,45]. It was also
shown that Bobcat is one of the best suited sampling devices to perform indoor bioaerosol
collection in hospital wards as in this study (e.g., [39,46,47]), since filter contamination by
the operators is unlikely to occur with respect to other commonly used air samplers.

2.2. Description of the Sampling Locations

Figure S1 provides a scheme of the ID ward where the indoor samples were collected
from 30 April to 4 June 2020, when the ID ward hosted 5 to 9 patients affected by COVID-19.
Visitors’ access to the ID ward was entirely restricted during the sampling period. The



Int. J. Environ. Res. Public Health 2022, 19, 10107 4 of 21

ID Department is made up of 5 patient rooms with conventional air conditioning systems
(denoted as conventional rooms), three high-isolation patient rooms at negative-pressure,
the doctor’s office, and the medicine-store room (MED). Twenty-five air changes per hour
leading to about 800 m3 per hour of outdoor air intake are regularly performed in the high-
isolation patient rooms. All patient rooms are equipped with a private bathroom. Table 1
summarizes the acronyms and the sampling dates of all the air samples investigated in this
study. Eight and six samples were collected in rooms with and without COVID-19 patients,
respectively. A_HR and A_R1 represent the air samples collected in a high isolation room
(HR) and in a conventional room (R), respectively, which hosted the COVID-19 patient
denoted with the capital letter A. Samples B_R1 and B_R2 were collected in the conventional
room that hosted the COVID-19 patient B. B_BAT represents the air sample collected in the
bathroom of patient B. B+C_R1 and B+C_R2 are associated with the air samples collected
in the conventional room that hosted both the B and C COVID-19 patients. Samples HR1
and HR2 and R3 and R4 were collected in the high isolation rooms 1 and 2, respectively,
and the conventional rooms 3 and 4, respectively, without any patients to investigate the
relationships between the bacterial profile in rooms with and without COVID-19 patients.
Sample MED was collected in the medicine-store room, reserved only to medical staff and
healthcare operators. Two electret-filter-holder-cups were used to collect airborne samples
by gravimetric dry deposition (DD) over 14 days in the ID Department. More specifically,
sample DD1 was collected in a COVID-19 patient room at about 1 m away from the patient’s
bed, while sample DD2 was collected in the corridor at about 1 m from the floor. Note
that the starting sampling date of samples DD1 and DD2 has been reported in Table 1.
Finally, an indoor air sample, denoted as PSY, was collected in a hospitalization room of the
psychiatry department, and two outdoor samples (RO1 and RO2) were collected on the roof
of the ID Department to investigate the relationships of 16S rRNA gene sequencing results
of these last three samples with the ones from the ID Department. Therefore, 14 out of the
17 air samples analyzed in the current study were collected at the ID ward. Bureaucratic
problems involving the permission to perform further measurements in the hospital, as
well as the lack of COVID-19 patients after the first week of June, limited the amount of the
collected samples.

Table 1. Alpha-diversity Shannon (H) and Simpson (D) indices calculated at the genus and species
level for the 17 analyszed samples. The sampling date of each sample is also reported.

Sample
Date

(dd/mm/yy)

At the Genus Level At the Species Level

Shannon
Index (H)

Simpson
Index (D)

Shannon
Index (H)

Simpson
Index (D)

A_HR 30/04/20 2.05 0.24 1.28 0.40
A_R1 01/05/20 2.29 0.17 1.87 0.26
B_R1 05/05/20 1.41 0.35 1.79 0.20
B_R2 07/05/20 1.89 0.21 1.72 0.20

B_BAT 06/05/20 1.74 0.23 1.73 0.20
B+C_R1 17/05/20 2.83 0.08 2.53 0.10
B+C_R2 21/05/20 2.79 0.08 2.45 0.10

HR1 01/05/20 2.27 0.12 1.09 0.47
HR2 15/05/20 2.78 0.07 2.27 0.12
R3 02/05/20 2.84 0.07 2.48 0.11
R4 04/06/20 2.80 0.09 2.34 0.11

MED 03/05/20 2.43 0.12 2.15 0.14
RO1 08/05/20 2.79 0.08 2.24 0.13
RO2 16/07/20 2.78 0.07 2.44 0.10
PSY 11/07/20 2.60 0.10 2.12 0.16

* DD1 07/05/20 2.52 0.10 1.80 0.19
* DD2 07/05/20 2.78 0.07 2.40 0.11

* The date represents the starting sampling date since both samples were collected by dry deposition over
14 days.
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2.3. Methodology for DNA Extraction and 16S rRNA Gene Metabarcoding Approach

Each liquid sample was stored at −30 ◦C before being treated by means of the DNeasy
PowerWater kit (Qiagen, Düsseldorf, Germany) for the DNA extraction. The genomic
DNA was extracted following the manufacturer’s suggestions and put in storage at −30 ◦C
for additional examination. The company Genomix4life S.R.L. (Baronissi, Salerno, Italy)
performed both the high-throughput sequencing tests and the primary bioinformatics
analyses on the liquid samples, following the procedures described in more detail by
Romano et al. [48]. The NanoDropOne spectrophotometer (Thermo Scientific, Waltham,
MA, USA) and the Qubit Fluorometer 4.0 (Invitrogen Co., Carlsbad, CA Briefly, USA)
were both utilized to evaluate DNA quantity and quality. Then, PCR amplification was
applied to the hyper-variable V3 and V4 regions of the 16S rRNA gene using the following
primers: Forward 5′-CCTACGGGNGGCWGCAG-3′ and Reverse 5′-GACTACHVGGG
TATCTAATCC-3′ [49]. A 16S Metagenomic Sequencing Library Preparation (Illumina,
San Diego, CA) was used to collect each PCR reaction. Qubit fluorometer (Invitrogen
Co., Carlsbad, CA, USA) was then used to quantify the identified libraries, which were
pooled to an equimolar quantity of each index-tagged sample up to a 4 nM concentration.
MiSeq platform (Illumina, San Diego, CA, USA) was used to obtain sequences from pooled
samples in a 2 × 250 paired-end format. The FASTQ software was finally used for the
quality control of the generated raw sequence files. The absence of contamination was
ensured by a negative control consisting of all the reagents but the DNA template and used
over each sample processing. The 16S Metagenomics app (Illumina, San Diego, CA, USA,
Version 1.1.0), a high-performance procedure based on the Ribosomal Database Project
(RDP) classifier [50], was used to perform the taxonomic classification of amplicon 16S
rRNA-gene reads. The RefSeq RDP 16S v3 May 2018 DADA2 32bp [51] represented the
used taxonomic database.

2.4. Statistical Techniques for Compositional Data Analysis

We first selected the 30 genera and the 30 species with the highest number of reads in
each sample. Then, we selected the ones common in at least 50% of the 17 samples. In this
way, we obtained 25 genera and 20 species to apply the CoDa analysis approach described
in the following. The CLR (centered log-ratio) transformation of the selected bacterial
genus and species reads was first performed. Note that the CLR ratio transformations
produce the same results whether the data are counts or proportions (i.e., their relative
abundances) and make the data symmetrical and linearly related in a log-ratio coordinate
space (e.g., [11]). If we consider an observation vector of N “counted” features (e.g., reads,
OTUs, taxa, etc.) in a sample, denoted as x = [x1, x2, . . . , xN], the CLR transformation for
that sample can be estimated by using the following formula:

xCLR = [log(x1/G(x)), log(x2/G(x)), . . . , log(xN/G(x))] (1)

where G(x) represents the geometric mean of the observation vector x. In more detail,
the CLR-transformed data present a fundamental property that makes them particularly
relevant for the CoDa analysis approach: they are scale-invariant. This last property means
that the same ratios can be obtained in a sample with few counts or an identical sample
with many counts, while the only difference can be the precision of the CLR calculation.
Note that the CLR-transformed matrix of the initial dataset cannot be determined with-
out replacing each zero-count value, otherwise it would not be possible to calculate the
xCLR values for each sample because of the zero value of the denominator in (1). Sev-
eral methodologies were developed for the zero-count replacement, as summarized by
Lubbe et al. [52]. The most common technique is to replace zero counts with a constant
value smaller than the detection limit. We have followed the methodology proposed by
Martín-Fernandez et al. [53]. They found that 65% of the detection limit minimizes the
distortion in the covariance structure. Therefore, since our detection limit is represented by
1 count, we replaced each zero count with 0.65 in our dataset. The centered log-ratio (CLR)
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transform was then applied to the zero-replaced datasets to produce heatmaps (we used
the heatmap function that is natively provided in the R package). Then, we calculated the
matrix of the Aitchison distances among the samples being appropriate for both clustering
and ordination techniques [16,54]. The Aitchison distance matrix was used as an input
parameter to calculate the corresponding dendrogram showing the relationships among
the studied samples. In more detail, to plot the dendrograms, we used the unweighted
pair-group average, which means that the dendrogram-clusters are joined based on the
average distance between all members in each couple of groups. The exploratory data
analysis to study the relationships among OTUs (bacterial genera or species) and sam-
ples was subsequently performed by using a principal component analysis (PCA). More
specifically, we performed the compositional PCA of our datasets by a singular value
decomposition (SVD) of the CLR-transformed data [2] using the prcomp function under the
R package stats. The PCA via SVD allows producing the score and loading plots (based on
the output matrices called x and rotation estimated by the prcomp R function, respectively)
to further examine the correlations/covariances among samples and OTUs. As specified by
Bian et al. [19], in the score plot, each point represents a sample, and the distance between
two points is proportional to the corresponding multivariate difference between the sam-
ples. Conversely, the loading plot represents the contribution of the OTUs to the separation
of the samples.

The ρmetrics [26] were used to analyze the correlations among the investigated genera
and among the investigated species. In more detail, the ρmetrics can be estimated by the
following formula:

ρ (Ai, Aj) = 2 cov (Ai, Aj)/(var (Ai) + var (Aj)) (2)

where the parameters Ai and Aj represent log (s · Xi) and log (s · Xj), respectively, s is the
total number of counts for a given sample, while Xi and Xj represent the number of counts
for a specific bacterial genus (or species) i and j for all the analyzed samples, respectively,
and cov and var are the covariance and variance, respectively. We estimated the ρmetrics
by using the R package propr.

Finally, the Shannon and Simpson indices (H and D, respectively) were calculated to
investigate richness and biodiversity of the investigated samples (e.g., [55,56]). The H and
D parameters were evaluated by the following formulas:

H = −Σi pi ln pi (3)

D = Σi (pi)
2 (4)

where pi is equal to ni/N, with ni representing the number of individuals in the species i
and N the relative total number in all the community [57]. Note that the larger the value
of H is, the larger the diversity of species becomes, while species richness and evenness
decrease if D increases. Therefore, D represents a parameter associated with the diversity
that considers both the number of species in each community and the relative abundance
of each species.

3. Results and Discussion

Main results both at the genus- and species-level are presented and discussed in this
section to support the comparison with previous studies presenting results only at the
genus- (e.g., [58]) or species-level (e.g., [59]).

3.1. Centered Log-Ratio Heatmap of Selected Bacterial Genera and Within-Sample Alpha-Diversity

The CoDa analysis approach has been applied to the 25 selected genera. Table S1
provides the CLR values associated with each genus in all the 17 samples, while Figure 1a
displays by a color plot the CLR-heatmap of the 25 selected genera, which are listed in
the figure in addition to the 17 samples where they were detected. Samples denoted
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according to Section 2.2 are listed in Table 1, as previously mentioned. The dendrograms
of Figure 1b,c based on the Aitchison distances provide a preliminary indication on the
association between samples and genera, respectively. The corresponding Aitchison matrix
is reported in Table S2. The color plot of Figure 1a indicates that the CLR value associated
with each genus varies among samples, because of the dependence of the sample taxonomic
structure on the sampling location. Two main clusters of samples can be identified in
Figure 1b: Cluster 1, which consists of the samples A_HR, DD1, B_R2, B_BAT, and B_R1,
and Cluster 2, which consists of all the other samples. Note that Cluster 1 samples were all
collected in rooms that hosted COVID-19 patients.
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Figure 1. (a) Heatmap based on the centered log-ratio (CLR) transformed values of the 25 selected
bacterial genera; (b,c) show the Aitchison distance-based dendrograms highlighting the relatedness
between different samples and genera, respectively. The red arrows in (b) allow identifying the two
main sample clusters identified by the dendrogram, where Cluster 1 includes the samples A_HR,
DD1, B_R2, B_BAT, and B_R1, and Cluster 2 consists of all the other samples. WPS in the genus
legend stands for WPSUnclassified1_genera_incertae_sedis.

Shannon and Simpson indices of each sample have been evaluated to quantify the
genera community alpha-diversity. Calculated values are reported in Table 1. H and D
reach the highest and the smallest value, respectively, in sample R3, which was collected
in a conventional room without any patients. Therefore, R3 is the sample with the largest
diversity and richness/evenness at the genus-level. In contrast, H and D reach the smallest
and the highest value, respectively, in sample B_R1, collected in a conventional room
occupied by patient B. Consequently, sample B_R1 is characterized by the lowest diversity
and richness/evenness at the genus-level. Figure 2a,b shows by box plots the Shannon and
Simpson indices, respectively, which referred to all the samples associated with Cluster 1
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and 2 from Figure 1b. The median and mean H values of the Cluster 1 box plot are
smaller than the corresponding values of the Cluster 2 box plot (Figure 2a). Cluster 1
consists of samples collected in rooms all occupied by COVID-19 patients, while most
of the samples collected in rooms without any COVID-19 patient contribute to Cluster 2.
Therefore, Figure 2a shows that the Cluster 1 samples are on average characterized by
smaller diversity at the genus-level than Cluster 2 samples. Figure 2b shows that the D
median and mean values of the Cluster 1 box plot are higher than the corresponding values
of the Cluster 2 box plot, because of the smaller richness/evenness of the samples collected
in rooms occupied by COVID-19 patients.
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Figure 2. Boxplots displaying the (a) Shannon and (b) Simpson index value calculated at the genus
level for the samples belonging to Cluster 1 (A_HR, DD1, B_R2, B_BAT, B_R1) and Cluster 2 (A_R1,
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the box and the white dots represent the median and mean value, respectively. The bottom and top
boundaries of each boxplot indicate the 25th and 75th percentiles, respectively. The whiskers are the
5th and 95th percentiles, respectively.

3.1.1. Singular Value Decomposition PCA by Score and Loading Plots at the Genus-Level

The exploratory analysis of the CLR-transformed genus dataset was also performed
by the SVD-PCA to examine the relationships among samples and selected bacterial genera,
according to Gloor et al. [2]. SVD-PCA outputs are driven by the genera with the largest
variation in the dataset and allow identifying main relationships between samples and
genera by comparing score and loading plots, which are shown in Figure 3 by red dots
and black arrows, respectively. Note that in the loading plot of Figure 3, the distance
from the origin and the direction of each arrow is proportional to the standard deviation
of the associated genus CLR value in the investigated dataset [19]. Then, the distance
between two arrows is inversely proportional to their compositional association: the
closeness between two arrows implies that the associated genera may have concordant
abundances within closest samples (red dots). We selected the SVD-PCA analysis since
it represents the preferred methodology when the number of input bacterial genera is
larger than the corresponding number of samples, as it occurs in our case, being the
number of genera and samples equal to 25 and 17, respectively. The variance percentage
explained by the first and second synthetic PCA axis, which is equal to 51.00% and 11.72%,
respectively, highlights a good performance of the used technique. The score plot (dots)
in Figure 3 firstly shows that all samples associated with Cluster 1 are on the right side of
the PCA-Axis 1, while most of the samples associated with Cluster 2 are on the left side of
the PCA-Axis 1. Sample A_R1 on the upper right-side quarter and sample B+C_R1 on the
lower left-side quarter of Figure 3, which are Cluster 2 samples collected in rooms with
COVID-19 patients, are the extreme ones, likely because of their different bacterial structure
with respect to that of the other Cluster 2 samples. The color plot in Figure 1a supports the
last comment. The loading (arrows) plot in Figure 3 highlights the rather different bacterial
structure between Cluster 1 and Cluster 2 samples. Pseudomonas, Staphylococcus, Prevotella,
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Corynebacterium, and Acinetobacter are mainly associated with samples B_R2, B_R1, and
B_BAT, which were all collected in rooms that hosted patient B, and with samples DD1
and A_HR. In contrast, Sphingomonas, Paracoccus, and Gp15 are mainly associated with
samples HR1 and A_R1. Corynebacterium, Sphingomonas, and Staphylococcus are the only
three genera detected in all the samples with high and positive CLR values, as reported in
Table S1. In fact, they are among the prevailing genera within hospital wards (e.g., [60,61]).
Corynebacterium is a skin colonizer that also has been isolated in patients after prolonged
hospitalization (e.g., [61,62]). Sphingomonas may be responsible for some nosocomial
infections from environmental exposure [62]. The genus Staphylococcus includes more than
45 species, mostly commensals of the skin and mucous surfaces of humans and other
mammals, and it is responsible for infections especially in patients undergoing prolonged
hospitalization and/or antibiotic therapy, or with comorbidities (e.g., [63]). Ribeiro et al. [58]
used some deep-sequencing analyses to examine and compare the structure of bacterial
communities in the intensive care units (ICU) and neonatal intensive care units (NICU)
of The Medical School Clinics Hospital in Brazil. They found that Staphylococcus was
one of the most abundant genera both in ICU and in NICU, in agreement with previous
studies [64–66]. Staphylococcus can present large abundances in ICU likely because it can
persist for months on dry surfaces [67] and/or can be associated with spore or biofilm
formation [68]. Acinetobacter and Pseudomonas, which are two among the five genera mainly
associated with the three samples collected in the patient B’s room, also represent two of
the most common pathogens causing hospital-associated infections (HAIs), according to
Magill et al. [69]. Moreover, Ribeiro et al. [58] specified that these genera can be usually
found in moist environments and may imply a high risk of HAI in immunocompromised
patients. Prevotella also represents a potentially dangerous human pathogen, and it was
found with high abundances on the surfaces near hospital computers (more specifically
near keyboard and mouse), according to Ribeiro et al. [58]. Bacteroides and Streptococcus
genera reached high and positive CLR values in the samples B_R2, B_R1, and B_BAT
(Figure 1a). Bacteroides is a common anaerobe that occupies the intestines of humans. It is
also the most common anaerobe recovered from various infections, such as intra-abdominal
infection, foot ulcer, and bloodstream infection (e.g., [70]). In more detail, the Bacteroides
fragilis group represents one of the most important anaerobic clinical pathogens and ranges
under the 15 most common pathogens causing nosocomial infections (e.g., [71]). Within
the Streptococcus genus, the related species S. pneumoniae is a major cause of community-
acquired pneumonia, bacteraemia, and meningitis, with asymptomatic nasopharyngeal
colonization generally representing a predisposing factor for pneumococcal infections [72].

The sample MED (Figure 3) cannot be significantly associated with any specific bac-
terial genera. In fact, it was collected in the medicine-store room, which was a less con-
taminated place, and consequently presents low or negative CLR values for almost all
the investigated bacterial genera (Figure 1a). As mentioned, the loading plot of Figure 3
shows that the bacterial structure of all Cluster 2 samples is rather different from that
of the Cluster 1 samples, as Cluster 2 samples were mainly collected in rooms without
any COVID-19 patient. Consequently, the loading plot on the left-side of Figure 3 shows
both that the bacterial structure varies among Cluster 2 samples and that most genera
are non-pathogenic. As an example, Gp16, Nocardioides, and Rubellimicrobium, which are
mainly associated with the Cluster 2 samples R3, DD2, R4, and B+C_R2 (Figure 3), are
non-pathogenic genera isolated from soil, while Roseomonas, which also reached positive
CLR values in the above samples (Table S1), is a pathogenic genus associated with bacter-
aemia and other human infections [73]. Arthrobacter and Solirubrobacter, which are mostly
associated with samples HR2 and RO1, also are genera commonly detected in soil [74,75].
Bacillus, Microvirga, and Streptomyces, which are associated with the PSY sample, in addition
to WPS and Solirubrobacter, also are widely found in soil.
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position of the CLR-transformed values for the 25 selected bacterial genera. The reported biplot
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are also reported. Note that WPS represents WPSUnclassified1_genera_incertae_sedis.

3.1.2. Proportionality between Genera by the ρMetrics

Table 2 summarizes the significant ρ values among the selected 25 genera, with both
positive and negative values (larger than 0.65 and lower than −0.65, respectively) reported
in brackets. The complete ρ matrix is displayed in Table S3. Few significant positive ρ
values among a pair of pathogenic genera associated with Cluster 1 samples have been
detected. More specifically, Table 2 displays positive and significant ρ values among
Corynebacterium and Staphylococcus (0.92), Acinetobacter and Pseudomonas (0.77), Bacteroides
and Prevotella (0.78), Bacteroides and Streptococcus (0.76), and Prevotella and Streptococcus
(0.83). The comparison of these results with the hierarchical clustering of clades on the
left-side of Figure 1c shows that the detected significant proportionalities between the
abovementioned pairs of pathogenic genera correspond to double clades in the dendrogram
of Figure 1c. Moreover, these pathogens may all cause hospital-associated infections, as
discussed in the previous section (e.g., [58,61,69,76–79]). The high proportionalities found
among Bacteroides, Prevotella, and Streptococcus can also be due to the fact that they are
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commonly found in the upper respiratory tract (e.g., [80,81]). Table 2 also shows that
Corynebacterium is characterized by significant negative ρ values with Nocardioides (−0.78),
Arthrobacter (−0.66), and Rubellimicrobium (−0.66), which are non-pathogenic genera mainly
isolated from soil. Staphylococcus is characterized by significant negative ρ values with
Microvirga (−0.79), Gp6 (−0.66), and Solirubrobacter (−0.67), in addition to Nocardioides
(−0.78), Arthrobacter (−0.74), and Rubellimicrobium (−0.75).

Table 2. ρmetrics values among the selected 25 genera. Only significant positive (ρ values > 0.65) and
negative (ρ values < −0.65) values are reported in the table. WPS in the “Bacterial Genera” column
represents WPS Unclassified1_genera_incertae_sedis.

Bacterial Genera Positive Correlations Negative Correlations

Corynebacterium Staphylococcus (0.92) Nocardioides (−0.78), Arthrobacter
(−0.66), Rubellimicrobium (−0.66)

Staphylococcus
Nocardioides (−0.78), Arthrobacter

(−0.74), Rubellimicrobium (−0.75), Microvirga
(−0.79), Gp6 (−0.66), Solirubrobacter (−0.67)

Acinetobacter Pseudomonas (0.77)

Pseudomonas Solirubrobacter (−0.70)

Hymenobacter Massilia (0.98)

Nocardioides Arthrobacter (0.75), Rubellimicrobium (0.79)

Arthrobacter Microvirga (0.82)

Rubellimicrobium Microvirga (0.75), Gp6 (0.73)

Bacillus
Gemmatimonas (0.78), Microvirga (0.69), Gp6 (0.66),

Solirubrobacter (0.71), WPS (0.85),
Streptomyces (0.66)

Prevotella (−0.78)

Gemmatimonas Gp6 (0.83), WPS (0.68) Bacteroides (−0.66), Prevotella (−0.68),
Streptococcus (−0.67)

Bacteroides Prevotella (0.78), Streptococcus (0.76)

Prevotella Streptococcus (0.83)

Significant positive ρmetrics values have also been found among the non-pathogenic
bacteria located at the left-side of Figure 3. In fact, Table 2 displays a significant positive ρ
value between Hymenobacter and Massilia (0.98), which can be mainly associated with the
samples A_R1 and HR1, respectively. Both genera were isolated in soil samples (e.g., [82–85]),
and Samaké et al. [86] identified them as two of the most abundant bacterial genera in PM10
samples collected in a rural background site in France. Significant positive ρ values also
occur among Bacillus and Gemmatimonas (0.78), Microvirga (0.69), Gp6 (0.66), Solirubrobacter
(0.71), WPS (0.85), and Streptomyces (0.66), which form a cluster of nested clades on the right
side of the dendrogram in Figure 1c.

In conclusion, Table 2 has shown that significant positive ρ values between two genera
have a close correspondence with the double clades from the Aitchison distance-based
dendrogram in Figure 1c, which also highlights the relatedness between different genera.

3.2. Centered Log-Ratio Heatmap of Selected Bacterial Species and Within-Sample Alpha-Diversity

The heatmap based on the centered log-ratio values of the 20 selected species is shown
by a color-plot in Figure 4a, while the within-sample CLR-values for each species are in
Table S4. Figure 4b,c show the Aitchison distance-based dendrograms. Table S5 provides
the corresponding Aitchison-distance matrix. The red arrows on the right side of Figure 4b
allow identifying two main cluster of samples. Cluster 1 consists of the samples B_R2,
B_BAT, B_R1, DD1, A_R1, A_HR, and HR1, which were all collected in rooms that hosted
COVID-19 patients, except for sample HR1, which was collected in an empty high isolation
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room. All the other 10 samples contribute to Cluster 2, collected in rooms without any
patients, except for B+C_R1, B+C_R2, and PSY samples.
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Figure 4. (a) Heatmap based on the centered log-ratio (CLR) transformed values of the 20 selected
bacterial species reads; (b,c) show the Aitchison distance-based dendrograms highlighting the relat-
edness between different samples and species, respectively. The two main sample clusters defined by
the corresponding dendrogram are also indicated in (b). Legend: S. (Staphylococcus) pettenkoferi,
C. (Corynebacterium) tuberculostearicum, A. (Acinetobacter) lwoffii, C. (Corynebacterium) jeikeium,
S. (Staphylococcus) cohnii, C. (Corynebacterium) vitaeruminis, P. (Propionibacterium) acnes, M. (Methylover-
satilis) universalis, G. (Gemmatirosa) kalamazoonesis, R. (Rubellimicrobium) roseum, u. (uncultured) Eu-
bacterium, B. (Blastococcus) aggregatus, N. (Nitrolancea) hollandica, S. (Solirubrobacter) ginsenosidimutans,
u. (uncultured) Acidobacteria (EF457480), M. (Modestobacter) lapidis, G. (Gemmatimonas) phototrophica,
M. (Microvirga) lupini, and u. (uncultured) Acidobacteria (EF457419).

Alpha-diversity of the bacterial species community was investigated by means of
Shannon (H) and Simpson (D) indices, whose values computed for each of the 17 samples
are listed in Table 1. The sample B+C_R1, collected in a conventional room hosting the
COVID-19 patients B and C, is characterized by the highest H value and the lowest D
value; therefore, it is the sample with the greatest species diversity and richness/evenness.
On the contrary, H and D reached the smallest and the largest value, respectively, in the
HR1 sample collected in a high isolation room with no patients. Figure 5a,b show by box
plots the Shannon and Simpson indices, respectively, referred to all the samples associated
with Clusters 1 and 2 from Figure 4b. The median and mean H values of the Cluster 1
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box plot are smaller than the corresponding values of the Cluster 2 box plot (Figure 5a).
In contrast, the median and mean D values of the Cluster 1 box plot are greater than the
corresponding values of the Cluster 2 box plot (Figure 5b), similarly to the findings at
the genus level. Therefore, Cluster 1 samples are on average characterized by a smaller
diversity and richness/evenness than Cluster 2 samples at the species level.
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Figure 6 displays the PCA score (red dots) and loading (black arrows) plots. The variance 
percentages explained by the first and second synthetic PCA axes are equal to 50.39% and 
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Figure 5. Boxplots displaying (a) Shannon and (b) Simpson indices calculated at the species level for
samples belonging to Cluster 1 (B_R2, B_BAT, B_R1, DD1, A_R1, A_HR, HR1) and Cluster 2 (RO1,
R3, HR2, DD2, RO2, R4, B+C1_R1, PSY, MED, B+C_R2). For each boxplot, the line within the box and
the white dots represent the median and mean value, respectively. The bottom and top boundaries of
each boxplot indicate the 25th and 75th percentiles, respectively. The whiskers are the 5th and 95th
percentiles, respectively.

3.2.1. Singular Value Decomposition PCA by Score and Loading Plots at the Species Level

The SVD-PCA was applied to the CLR-transformed bacterial species dataset to ex-
plore how the 17 samples and the 20 selected species are potentially linked to each other.
Figure 6 displays the PCA score (red dots) and loading (black arrows) plots. The variance
percentages explained by the first and second synthetic PCA axes are equal to 50.39% and
13.98%, respectively, which implies a good performance of the applied technique. All the
Cluster 1 samples, in addition to sample MED, are located on the right-side half plane
of Figure 6 SVD-PCA biplot, while all the other samples are on the left-side half plane
of Figure 6. Except HR1 collected in a high isolation room with no patients, all the other
Cluster 1 samples were collected in rooms with COVID-19 patients. Propionibacterium acnes,
Corynebacterium vitaeruminis, Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum,
and Corynebacterium jeikeium are the main species associated with the samples collected
in rooms with COVID-19 patients. Propionibacterium acnes is a microaerophilic and gram-
positive bacterium that resides in the pilosebaceous follicles of the human skin [87]. It
is a low-virulence opportunistic pathogen, which may cause a wide range of infections,
often following surgery and in relation with the use of medical devices [88]. Cases of
elbow joint and prosthetic joint infections, as well as post-operative discitis, have also
been reported [89–92]. Corynebacterium vitaeruminis has already been proved to be safe
and non-pathogenic; indeed, this strain was negative for 50 tested virulence and resis-
tance genes based on performed PCR, according to Colombo et al. [93]. Nevertheless,
its genus includes numerous species, which are increasingly recognized as important
pathogens related to human and animal diseases [94]. Staphylococcus pettenkoferi, originally
described in Germany in 2002 by Trülzsch et al. [95], is part of a group of bacteria known as
Coagulase-Negative staphylococci (CoNS), which are typical skin flora but potentially portend
pathogenicity against humans. A Canadian literature review [96] describes nine case re-
ports of S. pettenkoferi true bacteraemia worldwide [97]. This has been attributed not only
to nosocomial acquisition from the increased use of intravascular catheters and cardiac
devices but also to the aging of the population, as well as the larger number of immuno-
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compromised patients [98]. Corynebacterium tuberculostearicum and Corynebacterium jeikeium,
in addition to Staphylococcus cohnii and Acinetobacter lwoffii, are ubiquitous species in the
environment (soil and water) and often commensal of normal human skin and mucous
membranes [99]. More specifically, C. tuberculostearicum has been found as a frequent
colonizer on the skin of hospitalized patients, causing or not causing infections [100], while
C. jeikeium has frequently been isolated from clinical specimens and has demonstrated
nosocomial transmission. Acinetobacter lwoffii is a potential opportunistic pathogen isolated
in immunocompromised patients and has been considered to play a role in nosocomial
infections, such as septicaemia, meningitis, and pneumonia [101]. Moreover, Staphylococcus
cohnii is a common CoNS species frequently detected in hospital wards and characterized
by a notable antibiotic resistance [102].
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Table 3 shows high estimated ρ values also among R. roseum, Uncultured eubacterium, 
B. aggregatus, N. hollandica, and Solirubrobacter sp., which are species mainly associated 

Figure 6. Two-dimensional SVD-PCA of the CLR-transformed values for the 20 selected bacterial
species by the score (red dots) and the loading (black arrows) plot. The percentages of the total
variance explained by the first and second principal components are also reported. Legend: M.un
(Methyloversatilis universalis), P.ac (Propionibacterium acnes), C.vi (Corynebacterium vitaeruminis), S.pe
(Staphylococcus pettenkoferi), C.tu (Corynebacterium tuberculostearicum), C.je (Corynebacterium jeikeium),
S.co (Staphylococcus cohnii), A.lw (Acinetobacter lwoffii), M.lu (Microvirga lupini), G.ph (Gemmatimonas
phototrophica), N.ho (Nitrolancea hollandica), u.Eu (uncultured Eubacterium), R.ro (Rubellimicrobium
roseum), B.ag (Blastococcus aggregatus), u.Aci (uncultured Acidobacteria EF457480), S.sp. (Solirubrobacter
sp.), S.gi (Solirubrobacter ginsenosidimutans), G.ka (Gemmatirosa kalamazoonesis), M.la (Modestobacter
lapidis), and u.Ac (uncultured Acidobacteria EF457419).
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All the bacterial species associated with Cluster 2 samples are located on the left
half-plane of Figure 6, and they are mostly non-pathogenic. Rubellimicrobium roseum, as
an example, reached one of the highest CLR-value in sample DD2 (Table S4) and was
reported as one of the most ubiquitous soil and organic material-dwelling bacteria in
outdoor PM [103].

The sample MED (Figure 6) is close to the origin of the PCA axis as in Figure 3, because
it was collected in an aseptic area, and consequently, it is not associated with any bacterial
species. In conclusion, the SVD PCA biplot has clearly proved that the relationships among
samples and bacterial species depend strongly on monitoring locations.

3.2.2. Proportionality between Species by the ρMetrics

Table 3 summarizes the significant positive and negative ρ metrics values among
the selected 20 species, where significant values (larger than 0.65 and lower than −0.65)
have been reported in brackets. The complete ρmatrix is reported in Table S6. Rather few
significant positive ρ values between pairs of pathogenic species associated with Cluster 1
samples have been detected. More specifically, a high proportionality was identified
between S. pettenkoferi and C. jeikeium (0.66) and between C. jeikeium and S. cohnii (0.68),
which were mainly associated with the samples collected in the rooms that hosted patient B
(Figure 6).

Table 3. Relationships among the 20 selected bacterial species based on the ρmetrics proportionality.
Only significant positive (ρ values > 0.65) and negative (ρ values < −0.65) values are reported
in the table.

Bacterial Species Positive Correlations Negative Correlations

Corynebacterium tuberculostearicum

Uncultured eubacterium (−0.66),
Blastococcus aggregatus (−0.69),

Modestobacter lapidis (−0.72),
Solirubrobacter sp. (−0.66)

Rubellimicrobium roseum Uncultured eubacterium (0.75),
Blastococcus aggregatus (0.76) Propionibacterium acnes (−0.71)

Staphylococcus pettenkoferi Corynebacterium jeikeium (0.66) Modestobacter lapidis (−0.71),
Solirubrobacter sp. (−0.76)

Uncultured eubacterium
Blastococcus aggregatus (0.98),
Nitrolancea hollandica (0.67),

Solirubrobacter sp. (0.68)
Corynebacterium jeikeium (−0.69)

Blastococcus aggregatus Modestobacter lapidis (0.68) Corynebacterium jeikeium (−0.67)

Nitrolancea hollandica Solirubrobacter ginsenosidimutans (0.66)

Modestobacter lapidis Staphylococcus cohnii (−0.73)

Solirubrobacter sp. Solirubrobacter ginsenosidimutans (0.69),
uncultured Acidobacteria(EF457480) (0.83)

Corynebacterium jeikeium Staphylococcus cohnii (0.68)

Gemmatimonas phototrophica Microvirga lupini (0.99)

Table 3 shows high estimated ρ values also among R. roseum, Uncultured eubacterium,
B. aggregatus, N. hollandica, and Solirubrobacter sp., which are species mainly associated
with Cluster 2 samples. Moreover, similarly to what was found about bacterial genera (see
Section 3.1.2), Table 3 shows that all the significant negative ρ metrics (<−0.65) concern
the relationship between bacterial species belonging to Cluster 1 and those belonging to
Cluster 2, likely because most of the Cluster 1 samples have been collected in rooms that
hosted COVID-19 patients.
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4. Conclusions

The 16S rRNA gene sequencing dataset from airborne samples collected mainly at
the Infectious Disease (ID) Department at Santa Caterina Novella Hospital in Galatina
(Lecce, Italy) has been investigated in this study by means of a compositional data approach.
Exploring the airborne bacterial community structure within a nosocomial area, which
hosted COVID-19 patients, determining the impact of the sampling location on the bacterial
taxonomy, and investigating the relationship among taxa represented the main goals of the
current paper.

• Eight and six samples were collected at the ID ward, in rooms with and without
COVID-19 patients, respectively. Moreover, a sample (PSY) collected at the psychi-
atry department and two outdoor samples (RO1 and RO2) collected on the roof of
the ID department were also analyzed to compare their bacterial profiles with the
corresponding ones of indoor samples from the ID ward.

• Twenty-five genera, selected from the ones reaching the largest read number in each
sample and common to at least 50% of the 17 collected samples, were analyzed by
the compositional approach. More specifically, the SVD-PCA applied to CLR dataset
has been used to investigate the relationship among collected samples and selected
bacterial genera.

• The SVD-PCA score plot has shown that all samples could be divided in two groups:
Cluster 1, mainly consisting of samples collected in rooms occupied by COVID-19
patients, and Cluster 2, which included samples mostly collected in rooms without
any COVID-19 patients, as well as outdoor samples.

• The SVD-PCA loading plot has highlighted the different genus structure associated
with the samples of Cluster 1 and 2, respectively. Sphingomonas, Paracoccus, Gp15,
Pseudomonas, Staphylococcus, Prevotella, Corynebacterium, and Acinetobacter genera were
mainly associated with Cluster 1 samples, and they can be responsible for different
types of nosocomial infections.

• In contrast, Gp16, Nocardioides, Rubellimicrobium, Arthrobacter, and Solirubrobacter were among
the non-pathogenic genera isolated from soil and associated with Cluster 2 samples.

• Shannon and Simpson indices calculated at the genus level have shown that, on aver-
age, Cluster 1 samples were characterized by smaller diversity and richness/evenness
than Cluster 2 samples.

• The ρ metrics showed few significant positive values between genera associated with
Cluster 1 samples. More specifically, positive significant ρ values were found be-
tween Corynebacterium and Staphylococcus (0.92), Acinetobacter and Pseudomonas (0.77),
Bacteroides and Prevotella (0.78), Bacteroides and Streptococcus (0.76), and Prevotella and
Streptococcus (0.83). Moreover, it has been found that Corynebacterium and Staphy-
lococcus were characterized by significantly negative ρ proportionality with some
non-pathogenic genera associated with Cluster 2 samples.

• Significant positive ρmetrics values have also been found among some non-pathogenic
bacteria associated with the Cluster 2 samples, as the ones between Hymenobacter and
Massilia (0.98), and Bacillus and Gemmatimonas (0.78), as well as Microvirga (0.69), Gp6
(0.66), Solirubrobacter (0.71), WPS (0.85), and Streptomyces (0.66).

• Twenty bacterial species were also selected and analyzed by the SVD-PCA applied
to the CLR-transformed species dataset. Then, the score and loading plots allowed
dividing all samples into two clusters characterized by different bacterial species.

• Cluster 1 included all the samples collected in rooms with COVID-19 patients A
and B, while Cluster 2 was mostly consisted of samples collected in rooms without
COVID-19 patients. Propionibacterium acnes, Corynebacterium vitaeruminis, Staphylococ-
cus pettenkoferi, Corynebacterium tuberculostearicum, and Corynebacterium jeikeium were
the main species associated with Cluster 1 samples. Except for Corynebacterium vitaeru-
minis, which has been proved to be safe and non-pathogenic, all the other detected
species have frequently been identified in hospitals as agents of nosocomial infections.
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• Non-pathogenic species were mainly associated with Cluster 2 samples, such as
Rubellimicrobium roseum, which was reported as one of the most ubiquitous soil and
organic material-dwelling bacteria in outdoor particulate matter.

• Shannon and Simpson index mean values associated with Cluster 1 samples also
featured a smaller diversity and richness/evenness than Cluster 2 samples.

• The ρ metrics also revealed strong proportionality between bacterial species of
Cluster 1 samples, while negative relationships were found with non-pathogenic
species detected in Cluster 2.

In conclusion, the compositional data approach applied to a 16S-rRNA-gene sequenc-
ing dataset to investigate the typical airborne microbiome within an infectious disease
department, focusing on bacterial genera and species, has been discussed. Consistently
with previous works, we found several genera and species commonly associated with
nosocomial pathologies, mostly in samples collected in rooms hosting COVID-19 patients,
while non-pathogenic taxa were mainly detected in samples collected in the absence of
patients, as well as in outdoor samples. The impact of the sampling location on the detected
bacterial distribution, both at the genus and species level, has been clearly demonstrated.
Nevertheless, we are aware that the limited number of the analyzed samples may represent
a disadvantage to this study, but bureaucratic and technical reasons did not allow us to
perform additional samplings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph191610107/s1, Figure S1: Schematic picture of the intensive care
unit; Table S1: Heatmap of the centered log-ratio (CLR) values of the 25 bacterial genera; Table S2:
Aitchison distance matrix of within-sample CLR values associated with the 25 bacterial genera; Table S3:
Matrix based on ρmetrics among the 25 bacterial genera; Table S4: Heatmap of the CLR values of the
20 bacterial species; Table S5: Aitchison distance matrix of within-sample CLR values associated with
the 20 bacterial species; Table S6: Matrix based on ρmetrics among the 20 bacterial species.
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