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Simple Summary: African swine fever is the most significant disease threat to swine globally, and
recent introductions into previously negative countries has heightened the risk for disease spread.
Without an effective vaccine or treatment, the primary objective of negative countries is to prevent
African swine fever virus infection in pigs. Significant quantities of feed ingredients used for swine
diets are traded worldwide and may be imported from countries with African swine fever. If feed
ingredients are contaminated with the virus, they can serve as potential routes for the introduction
and transmission of African swine fever virus. This review provides information on the risk of
African swine fever virus in feed and the mitigation strategies that may help protect the global swine
population from introduction and spread through feed.

Abstract: Since the 2013 introduction of porcine epidemic diarrhea virus into the United States
(U.S.), feed and feed ingredients have been recognized as potential routes for the introduction and
transmission of foreign animal diseases of swine. Feed ingredients for swine diets are commodities
traded worldwide, and the U.S. imports thousands of metric tons of feed ingredients each year from
countries with circulating foreign animal diseases. African swine fever (ASF) is the most significant
foreign animal disease threat to U.S. swine production, and the recent introduction of ASF into
historically negative countries has heightened the risk for further spread. Laboratory investigations
have characterized the stability of the ASF virus (ASFV) in feed ingredients subjected to transoceanic
shipment conditions, ASFV transmissibility through the natural consumption of plant-based feed,
and the mitigation potential of certain feed additives to inactivate ASFV in feed. This review describes
the current knowledge of feed as a risk for swine viruses and the opportunities for mitigating the risk
to protect U.S. pork production and the global swine population from ASF and other foreign animal
diseases.

Keywords: feed; feed ingredients; trade; African swine fever; foreign animal disease; transmission;
virus spread

1. Risk of ASFV to the Swine Industry

African swine fever virus (ASFV) is arguably the most significant threat to worldwide
pork production due to its high case fatality rate, recent emergence in new countries and
continents [1], lack of a commercially available vaccine [2], and substantial impacts on
global markets. Importantly, ASF is a trade-limiting disease with significant implications for
both global pork and agricultural commodities; economic losses due to ASFV introduction
into the United States (U.S.) are estimated to be between $15 and $50 billion, depending on
the disease spread in the feral swine population [3].

ASFV is an enveloped double-stranded DNA virus in the family Asfarviridae [4]. A
complex and unique virus, ASFV only infects pigs and presents several distinct challenges
to disease control. ASFV is the sole virus classified in the family Asfarviridae, which
precludes the translation of knowledge on closely related viruses to ASFV pathogenesis
and protective correlates. Furthermore, a cursory comparison between ASFV and influenza
A virus (IAV) in regard to genome length (170–190 kbp ASFV genome versus 13.5 kb
IAV genome) and the number of encoded proteins (151–167 ASFV proteins versus 11 IAV
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proteins) underscores the complexity of the ASF virus [5,6]. ASFV is highly pathogenic,
causing widespread hemorrhage and mortality rates approaching 100% in infected pigs [7].
Transmission routes for ASFV are diverse (Figure 1) and include both direct contact with
infected domestic or wild pigs [8] as well as indirect contact with infectious fomites and
consumption of contaminated swill or feed [9]. Unique to ASF is the vector transmission
through soft ticks of the Ornithodoros spp. [10], characterizing ASFV as the lone arthropod-
borne virus with a double-stranded DNA genome. ASFV is stable in the environment due
to resistance to pH and temperature extremes relative to other swine viruses [11], survives
for months in contaminated pork products, and has the potential to become endemic in
feral swine [12]. With no commercially available vaccine for preventing infection [13] or
treatment available to reduce disease severity in infected pigs, the overwhelming objective
of negative countries is to prevent ASFV introduction through biosecurity of people,
animals, feed, and supplies entering farms.
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Figure 1. Routes of African swine fever virus (ASFV) transmission. Figure depicts potential modes of ASFV transmission,
including (1) direct contact with excretions and secretions from infected domestic swine, (2) direct contact with excretions
and secretions from infected wild boar or feral swine, (3) natural oral consumption of uncooked contaminated pork
products or swill, (4) vector-borne transmission through the bite of an infected soft tick (Ornithodoros spp.), and (5) natural
oral consumption of contaminated plant-based feed. Non-depicted modes of ASFV transmission include exposure to
contaminated fomites, such as boots, clothing, pens, trucks, and other inanimate materials.

ASFV infection and outbreaks in swine were originally described over a century
ago in East Africa [14]. In recent years, since the 2007 introduction of ASFV into the
Caucasus region of Georgia [15], there has been steady emergence of this virus in new
countries and regions that have historically been negative. Examples of regions and
countries reporting ASFV introduction over the decade following 2007 include the Russian
Federation [16], Poland [17], Latvia [18], and the Czech Republic [19]. On 3 August 2018, the
first introduction of ASFV was reported in China, home to the world’s largest population
of pigs and pork consumers [20,21]. Over the months following ASFV incursion into China,
the virus spread rapidly to at least 12 other Asian and South Pacific countries [1], including
Mongolia [22], Vietnam [23], South Korea [24], and Timor-Leste [25]. Concurrent to the
spread of ASFV in Asia, dissemination of the virus continued to be reported across several
European countries, including Romania [26], Bulgaria [27], Belgium [28], and Serbia [29].
Moreover, Germany, the largest swine producer in the European Union (EU), identified its
index case in an adult female wild boar on 10 September 2020 [30].
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2. Introduction of Feed Risk

Swine enteric coronaviruses, including porcine epidemic diarrhea virus (PEDV) and
porcine deltacoronavirus (PDCoV), are considered the last major transboundary swine
diseases introduced into the U.S. pig herd in 2013 and 2014, respectively [31,32]. The
causative agents of both diseases are single-stranded enveloped RNA viruses of the family
Coronaviridae [33]. In contrast to the currently circulating novel coronavirus in humans
(SARS-CoV-2), these swine coronaviruses are major causes of gastrointestinal disease in
pigs and are not a major cause of clinical respiratory signs. Within 8 weeks after the first
case of PEDV detection in North America, the virus had spread to most of the major swine
producing regions in the U.S. [34]. Within 1 year after PEDV introduction, the virus was
responsible for the loss of 10% of the U.S. swine crop, or approximately 7 million pigs [35].
Death due to this disease is devastating as the majority of severely affected pigs and
mortalities are neonates within the first few days of life [31]. Importantly, PEDV rapidly
expanded into U.S. feral swine populations, with antibody-positive serum samples being
detected in wild pigs less than 1 year after virus introduction into domestic swine [36]. The
disease eradication challenges posed by the transmission of porcine viruses into feral swine
populations cannot be overstated. Almost 8 years after the introduction of PEDV, this virus
continues to cause endemic disease in U.S. swine [37] and investigations continue to seek
improvement and refinement of protocols for disease control of circulating historical and
novel virus variants [38].

After the introduction of PEDV into North America, several epidemiological analyses
into the introduction and rapid spread across new farms revealed the potential source of
the virus as contaminated feed and feed ingredients [34]. First, the genetic sequences of
the PEDV strains that emerged in U.S. swine-producing states shared ≥99.5% nucleotide
identity with a PEDV strain that had recently circulated in the Anhui Province of China [39].
Based on this analysis, the authors concluded that the country of origin of U.S. PEDV strains
was likely China [39], a country from where thousands of metric tons of feed ingredients
had been imported into the U.S. [40]. Second, research revealed that PEDV maintained
infectivity in several feed ingredients, including soybean meal, exposed to temperature
and humidity conditions simulating a 37-day transpacific shipment environment based on
historical meteorological data [41]. Third, experiments confirmed PEDV was transmissible
through the natural consumption of contaminated plant-based feed [42] and identified
a low minimum infectious dose (101.7 50% tissue culture infectious dose/g (TCID50/g))
required for infection through feed [43]. Fourth, PEDV RNA was detected in feed and feed
supplement samples that had been implicated as potential sources of the virus introduction
on new farms in Ohio and Canada [44,45]. Retrospective Canadian analyses identified
that the receipt of feed from a specific company increased the likelihood of a porcine
epidemic diarrhea (PED) outbreak by 38 times [46] and that PED cases were associated
with a single feed supplier network [47]. Taken together, feed as a novel risk factor for
viral disease introduction on swine farms was recognized due to the collective North
American experience with PEDV. Furthermore, epidemiological investigations after PEDV
was introduced into other Asian countries corroborated a potential role of feed, such as
feed truck deliveries in Japan [48] and feed mill density in Taiwan [49].

For feed ingredients to serve as transboundary vectors for viral diseases such as PED
and ASF (Figure 2), feeds or ingredients must first have a source of virus contamination.
Contamination risks are present at several critical control points during feed manufacture
and may be pervasive in countries with uncontrolled outbreaks where widespread envi-
ronmental contamination has occurred. Specific examples of contamination risks include
exposure of pre-harvest field crops to infected wild boar, exposure of post-harvest grains
drying on roadways to vehicles transporting infected pigs, exposure of feed-ingredient-
processing facilities to infectious fomites such as personnel shoes, exposure of ingredients
post-processing to infectious fomites such as multi-use containers, and exposure of stored
ingredients to infectious pests. After contamination at any of these control points, feed
ingredients from ASF-positive countries would undergo transoceanic shipment across the
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Atlantic or Pacific Ocean in large shipping containers. Ingredients arrive in bulk at seaports
for inspection by U.S. Customs and Border Protection prior to transfer onto trucks for
land transport. Finally, feed ingredients arrive at feed mills across the U.S. for inclusion in
complete feed diets and delivery to swine farms for consumption (Figure 2).
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Figure 2. Mechanism by which feed ingredients may serve as transboundary vectors of swine viral
diseases. Risky agricultural practices, such as drying grains on roadways, may contaminate feed
ingredients in countries with circulating foreign animal diseases. Trucks carrying pigs may drive over
areas where feed ingredients are drying, transferring viruses through pig excretions and secretions.
Feed ingredients are transported in shipping containers across transoceanic conditions to arrive in
the importing country. Trucks transport the feed ingredients on interstate highways to feed mills,
where they are incorporated into a complete feed diet. Feed mills widely distribute feed to swine
farms for pigs’ consumption and growth.

Although there are other risk factors, such as illegally smuggled pork products,
for introduction of ASFV into the U.S. [50], plant-based feeds and feed ingredients are
of particular concern due to several unique characteristics. Concerning aspects of feed
ingredients include their global sourcing, intended purpose for pig consumption, distinct
access to commercial swine in high-biosecurity farms, and widespread distribution from
centralized feed mills. An example of the former characteristic was reported in a 2018
inventory when one U.S. swine farm declared feed ingredients had been sourced from
12 different countries across three continents [51]. Further, the latter characteristic negates
the need for farm-to-farm proximity, which is important for other introduction routes, such
as aerosol, equipment, and personnel. For example, in modeling the direct and indirect
sources of PEDV spread over 5 months within one U.S. production system, VanderWaal
et al. (2018) reported feed as a more often attributed transmission source between physically
distanced farms [52]. Additional data support the concept of feed as a virus source for
long-distance spread. Specifically, a U.S. survey identified feed as the PEDV source more
often in regions considered non-swine-dense [34], and a Japan survey identified feed truck
visits as a risk for PEDV introduction on only those farms located greater than 5 km from
other infected farms [48]. Furthermore, a recent real-world demonstration project reported
PEDV survival in feed ingredients transported in a commercial trailer for 21 days over
14 states covering 9741 km [53]. In summary, insight garnered from PEDV has revealed the
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vulnerability of swine farms to transcontinental and cross-country virus spread through
contaminated feed.

Once feed and ingredients were identified as novel routes for transboundary viral
disease spread, defining feed risk for other foreign animal diseases (FAD), including
ASFV, emerged as a priority for the U.S. swine industry [54]. Historical introductions and
spread of ASFV into new countries or regions have had epidemiological associations with
contaminated feed in the absence of swill or infectious food waste containing pork. For
example, on Romanian backyard farms, one of the risk factors for ASFV incursion during
May–September 2019 was feeding plant material that had originated from ASFV-positive
regions to pigs [26]. Another example includes Latvia, where contaminated grass and
crops fed to pigs were implicated in the 2014 outbreaks of ASFV on backyard farms [18].
Contamination of cereal grains and grasses fed to commercial pigs was also a likely route
of ASFV introduction on farms in Estonia between 2015 and 2017 [55]. Further, dried blood
products contaminated with ASFV and used as feed additives were suggested contributors
to disease spread in China [56,57].

3. Certain Ingredients Support ASFV Stability

Identifying which feed ingredients provide an environmental matrix that supports
ASFV stability is an important step in determining risk. To evaluate this risk using a
transboundary shipment model, Dee et al. (2018) selected 12 feeds, ingredients, or products
of animal origin based on import volume and use in swine feed for evaluating ASFV
stability [58]. Ingredients included conventional soybean meal, organic soybean meal, soy
oilcake, distillers dried grains with solubles (DDGS), lysine, choline, vitamin D, moist cat
food, moist dog food, dry dog food, pork sausage casings, and complete feed. Following
inoculation with ASFV Georgia 2007, ingredients were exposed to fluctuating temperatures
and humidity that replicated real-world meteorological conditions during transoceanic
shipment. Ingredients were tested for the presence of infectious virus at the conclusion of
the simulated shipment model. After 30 days of transatlantic shipment conditions, ASFV
Georgia 2007 was broadly stable across diverse ingredients, with infectious virus being
detected in 75% (9/12) of the tested ingredients, including conventional soybean meal,
organic soybean meal, soy oilcake, choline, moist cat food, moist dog food, dry dog food,
pork sausage casings, and complete feed [58].

Importantly, several of the ingredients identified as supportive to ASFV also provided
an environmental matrix that stabilized other diverse viruses of concern to swine health. Of
the 14 viruses that have been tested in transoceanic shipment models to date [40], 9 (9/14;
64%) and 6 (6/13; 46%) viruses survived the 30 or 37-day environmental conditions in con-
ventional soybean meal and pork sausage casings, respectively. Furthermore, conventional
soybean meal and pork sausage casings promoted survival of the four viruses considered
the highest priority for preventing entry by the U.S. swine industry [59], including foot-
and-mouth disease virus (tested by surrogate Seneca virus A (SVA)), ASFV, classical swine
fever virus, and pseudorabies virus. Other ingredients supporting wide-ranging pathogen
stability included lysine (6/14; 43%), choline (5/14; 36%), vitamin D (5/14; 36%), and
complete swine feed in meal form (5/13; 38%) [40].

ASFV half-lives in feed ingredients provide additional evidence as to the relative virus
stability across different matrices. The half-life is independent of titer and is defined as
the time necessary for the virus quantity to be reduced to half its initial concentration [60].
The half-life of ASFV Georgia 2007 has been determined in nine feeds and feed ingredients
that promoted viral stability in transoceanic shipment conditions [61]. To calculate ASFV
half-lives in the nine feed ingredients, viral decay was quantified throughout the 30-day
transoceanic model incorporating moderate temperature (mean 12.3 ◦C) and humidity
(mean 74.1%) conditions. Half-life estimates across all feed ingredients were between
9.6 ± 0.4 and 14.2 ± 0.8 days, with an average half-life of 12.2 days. Interestingly, the ASFV
half-life in organic soybean meal was 3 days greater in length than conventional soybean
meal. Further, all nine feed matrices enhanced ASFV stability compared to laboratory
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media, in which the ASFV half-life was 8.3 ± 0.3 days [61]. Variability in half-life estimates
across feed matrices is likely associated with protein, fat, or moisture content; chemical
exposure; and ingredient processing. Overall, the feed matrix promotes ASFV stability, and
approximately 2 weeks are required for the virus concentration to decrease by half under
shipping conditions.

4. ASFV Transmission through Plant-Based Feed

ASFV transmissibility through the oral route has been appreciated for a century and
was recognized early on as having more variability than parenteral routes of inocula-
tion [14]. Numerous experimental studies have since reported infection rates of historical
and modern ASFV isolates after oral, nasal, or intraoropharyngeal ASFV administration
(Table 1). However, transmissibility of the modern ASFV Georgia 2007 isolate through
natural drinking of contaminated liquid and natural eating of contaminated plant-based
feed was only recently characterized [51]. For this study, infectivity rates in nursery pigs
were determined at various ASFV doses consumed naturally in small volumes of liquid
media (100 mL) or complete feed in meal form (100 g). Confirmed infection occurred
through both drinking and eating routes, with lower doses required for transmission in
liquid compared to feed. Specifically, the minimum infectious dose (MID) of ASFV Georgia
2007 in liquid was 100 50% tissue culture infectious dose (TCID50), whereas 104 TCID50 was
the dose necessary for infection in feed. Statistical modeling of repeated exposures to small
volumes over time (i.e., consuming a contaminated batch of feed or drinking contaminated
water) revealed an increased likelihood of infection as the number of exposures or total
consumption volume rises. Taken together, ASFV is orally transmitted through natural
consumption of contaminated plant-based feed, with the infection probability dependent
on the quantity of virus present and the volume of feed consumed [51].

Table 1. Infection rates of different doses and strains of African swine fever virus (ASFV) when administered through the
oronasal route or consumed through natural eating and drinking behaviors *.

ASFV Strain Route Dose Infection Reference

Georgia 2007 Drinking in media † 100 37.5% [51]
Georgia 2007 Drinking in media † 101 44.4% [51]
Armenia 2008 Oronasal 100.5–101.4 ‡ 12.5% [62]
Malawi 1983 Intraoropharyngeal 102 0% [63]
Malawi 1983 Intranasopharyngeal 102 50% [63]
Georgia 2007 Drinking in media † 102 75% [51]

Dominican Republic 1979 Intranasal/oral 102.7 0% [64]
Georgia 2007 Eating in complete feed † 103 0% [51]
Malta 1978 Intranasal 103 60% [65]

Georgia 2007 Drinking in media † 103 83.3% [51]
Netherlands 1986 Intranasal 103.5 60% [65]

Dominican Republic 1979 Intranasal/oral 103.7 12.5% [64]
East African Eating in liquid or moistened solid feed † 103.7–106.1 0% [66]
East African Intranasal 103.7–103.9 100% [66]

Tanzania KWH/12 Drinking in cow milk † 104 0% [67]
Georgia 2007 Eating in complete feed † 104 40% [51]
Malta 1978 Intranasal 104 100% [65]

Georgia 2007 Drinking in media † 104 100% [51]
Malawi 1983 Intranasopharyngeal 104 100% [63]
Malawi 1983 Intraoropharyngeal 104 100% [63]
Georgia 2007 Eating porcine plasma in complete feed † 104.3 0% [68]
Brazil 1978 Intranasal 104.5 100% [65]

Dominican Republic 1979 Intranasal/oral 104.7 87.5% [64]
Georgia 2007 Eating soft ticks in brioche † 104–105 33% [69]
Georgia 2007 Eating porcine plasma in complete feed † 105 0% [68]
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Table 1. Cont.

ASFV Strain Route Dose Infection Reference

Unknown Eating infectious material † 105 ¶ MID [70]
Tanzania KWH/12 Drinking in cow milk † 105 37.5% [67]

Georgia 2007 Eating in complete feed † 105 44.4% [51]
Tengani Intranasal 105 100% [70]

Georgia 2007 Eating in brioche † 105.5 0% [69]
Dominican Republic 1979 Intranasal/oral 105.7 90% [64]

Georgia 2007 Eating in complete feed † 106 25% [51]
Tanzania KWH/12 Drinking in cow milk † 106 75% [67]

Malawi 1983 Intranasopharyngeal 106 100% [63]
Malawi 1983 Intraoropharyngeal 106 100% [63]
Georgia 2007 Eating soft ticks in brioche † 106–107 100% [69]
Georgia 2007 Eating in complete feed † 107 40% [51]

Tanzania KWH/12 Drinking in cow milk † 107 100% [67]
Hinde WH II Oral 107–107.5 100% [71]
Hinde WH II Eating in dry feed † 107–107.5 100% [71]

Tengani Intranasal 107.2 100% [72]
Georgia 2007 Eating in complete feed † 108 50% [51]

Tanzania KWH/12 Drinking in cow milk † 108 100% [67]
Kenya Eating feces or urine contaminated feed † ND 100% [14]
Kenya Eating in sweet potatoes or bananas † ND 0% [14]

* Studies are in ascending order as per the dose administered, with unknown doses at the end of the table. Within infection studies
evaluating the same dose, references are in ascending order based on percentage infection. Dose shown as either 50% tissue culture
infectious dose (TCID50) or 50% hemadsorbing dose (HAD50), except where indicated. † Indicates consumption through natural drinking
or eating behaviors; ‡ dose shown in hemadsorbing units (HAU); ¶ unknown units used for quantification of dose. Key: MID, minimum
infectious dose; ND, not determined.

Additional studies have published the ASFV dose required for infection through
oronasal administration or consumption of the virus in various feed and liquid matrices
(Table 1). For example, Pietschmann et al. (2015) reported that doses as low as 100.5–101.4

hemadsorbing units (HAU) of ASFV Armenia 2008 were capable of causing infection
through oronasal administration [62]. Inoculation experiments using the ASFV Malawi
1983 isolate determined that a 102 50% hemadsorbing dose (HAD50) was sufficient to
cause infection when delivered intranasopharyngeally but not when delivered intraoropha-
ryngeally [63]. When the virus was consumed in cow milk, a dose of 105 HAD50 was
required for infection with ASFV Tanzania KWH/12 [67]. Blázquez et al. (2020) reported a
lack of infection after repeated consumption of ASFV Georgia 2007 (104.3 or 105 TCID50)
mixed in liquid porcine plasma and complete feed [68]. Early studies on pathogenesis
also highlighted infection variability through the oral route, including a lack of infection
after ingestion of the ASFV East African strain (103.7–106.1 HAD50) in liquid or moistened
solid feed [66] and successful ASFV infection after ingestion of the ASFV Hinde WHII
strain (107–107.5 HAD50) in dry feed [71]. Furthermore, Montgomery (1921) described
infection of pigs through consumption of infectious feces- or urine-contaminated feed,
while consumption of ASFV in sweet potatoes or bananas failed to result in infection [14].
These studies underscore the importance of ingredient composition when considering
feeds and liquids as delivery vehicles for ASFV via the oral route.

5. Reducing ASFV Risk through Feed Biosecurity

As a relatively new area of specialization in the biosecurity realm, feed biosecurity has
become an important and widely recognized biosecurity target critical for the prevention
of porcine viral disease entry onto farms. When examining feed ingredients as a potential
pathogen source, several factors influence this biosecurity risk [73]. Assessment of risk
starts with characterizing the necessity, source, and virus stability data of each feed ingredi-
ent (Figure 3). First, inclusion of the ingredient should be confirmed necessary for swine
health and growth, and it should lack a suitable, cost-effective, and lower-risk alternative.
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Second, the disease status of the country of origin for each ingredient should be considered,
including swine disease outbreaks in specific regions or endemic diseases of widespread
prevalence. For instance, sourcing feed ingredients from the U.S. currently poses no risk for
ASFV introduction but does not eliminate the possibility of feed as a vector for currently
circulating diseases such as PED. Moreover, risks in positive countries across the world
may vary depending on the disease epidemiology at the time of ingredient manufacture
and import. For example, when considering soy-based feed ingredients imported to the
U.S. from ASFV-positive countries in 2018 and 2019, the greatest volume was received
from China and Ukraine [74], two countries with very different epidemiological situations
impacting risk.
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As a third consideration, the environmental stability of the virus in the feed ingredient
plays a role in risk. Specifically, experimental research has identified high-risk ingredients,
such as conventional soybean meal, which provide environmental matrices conducive
to broad and diverse pathogen stability across DNA and RNA as well as enveloped and
non-enveloped viruses [40]. Ingredients that provide widely supportive environments are
risks for those pathogens not yet tested as well as those pathogens yet to emerge. On the
other hand, certain types of pathogens (e.g., non-enveloped viruses) are generally stable
across most environments. Finally, the agricultural or manufacturing practices used to
produce the ingredient impact risk. For example, the practice of drying grains on roadways
shared by trucks transporting live swine increases the chance of viral contamination. In
contrast, ingredients manufactured and sealed in biosecure facilities with safe processes
and a low likelihood of environmental exposure pose fewer risks.
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Feed, ingredient, and feed mill biosecurity is essential for reducing infectious disease
risks at all stages of swine production [76,77], and implementation of biosecurity proce-
dures focused on feed can help address these risks. Breaches in feed biosecurity can result
in virus contamination during the growing, harvesting, processing, or post-processing
of crops intended for swine feed. In a review of the prevention of ASFV incursion onto
EU backyard farms, recommendations included not providing pigs any newly harvested
feedstuff from regions with ASFV [78]. This recommendation was driven by epidemio-
logical investigations linking fresh grass and seeds contaminated by secretions of infected
wild boar with access to fields [79]. Further, ensuring the biosecurity of receptacles for
feed transport is essential, as contaminated flexible intermediate bulk containers were
implicated as a likely root cause for the U.S. PEDV outbreak [80]. Finally, secure storage of
feed intended for pig consumption is necessary, as unsafe feed stores have been associated
with ASFV introduction on farms in the EU [55].

Recently, the Canadian Food Inspection Agency (CFIA) sought to develop risk assess-
ment criteria for livestock feed mills and published 34 risk factors identified as important
for feed mill safety and security. Among the identified factors were manufacturing practices
allowing feed contamination through open equipment; use of at-risk imported feed ingre-
dients; control measures for incoming ingredients, such as analysis certificates or supplier
audits; and controls for finished feed, such as single-use packaging material and trans-
port sequencing [81]. Many current biosecurity protocols for swine farms can be directly
translated to the feed mill environment. Protocols may include regulations on (1) limiting
access of people and vehicles, (2) showering prior to facility entry, (3) changing of clothes
and shoes prior to entry, (4) forming lines of separation or barriers to identify restricted
areas, (5) prohibiting high-risk product entry, (6) disinfecting supplies and equipment, (7)
ensuring cleaning and hygiene of staff, (8) ensuring quarantine time for employees and
visitors traveling to ASFV-positive countries, (9) limiting personnel exposure to swine, (10)
performing pest control, (11) decontaminating transport and delivery vehicles, and (12)
providing training on safe feed handling for mill operators and truck drivers. Reported by
Pudenz et al. (2019), biosecurity practice adoption is impacted by swine producer demo-
graphics, operation type, and feasibility of implementation. Fortunately, feed biosecurity
procedures included in the Secure Pork Supply Plan, such as receiving and storing feed in
pest-resistant containers and sweeping up spilled feed, were reported to be highly adopted
by over 90% of the >300 surveyed producers in the U.S. [82].

6. Physical Mitigation Methods for ASFV in Feed

In addition to biosecurity and sourcing considerations, physical and chemical treat-
ments of feed or ingredients can be tools for risk mitigation of ASFV. Implementing feed
quarantine [54], or storage of ingredients after import from high-risk countries and regions,
is one strategy intended to allow virus decay prior to incorporation of the ingredients into
swine diets. For example, ASFV half-lives [61] were recently used to provide holding time
information to U.S. swine producers for 99.99% degradation of ASFV in high-risk feed
ingredients [83]. Holding times were based on 13 half-lives, which is the time required to
reduce the ASFV concentration to 0.01% of its initial quantity. Mean holding times ranged
between 125 and 168 days for conventional soybean meal, organic soybean meal, and
choline exposed to moderate environmental conditions at a mean temperature of 12.3 ◦C.
Further, holding times were reported for 99.99% degradation of SVA in conventional soy-
bean meal, DDGS, vitamin D, and lysine at three mean temperatures. Holding times ranged
from 39 to 494 days at 4 ◦C, 13 to 182 days at 15 ◦C, and 13 to 26 days at 30 ◦C [83].
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In March 2019, the CFIA implemented storage requirements for unprocessed grains,
oilseeds, and associated meals imported from countries at risk for ASFV contamination.
These storage regulations were intended to mitigate the risk of ASFV introduction into
Canada through imported plant-based feed ingredients. Regulations included storage
of ingredients for at least 100 days at 10 ◦C or 20 days at 20 ◦C. Alternatively, the CFIA
provided regulatory guidelines for heat treatment of feed ingredients to increase the rate of
viral decay and further reduce the risk of ASFV. Specifically, feed ingredients are heated
for 30 min at 70 ◦C or 5 min at 85 ◦C. Storage time or heat treatments are required prior to
imported products entering the livestock feed chain [84]. In the EU, where ASFV is present
in wild boar and contamination of field crops has been reported, recommendations include
storing fresh grass and grains for 30 days prior to feeding and storing straw for 90 days
prior to bedding use. These recommendations are to reduce the risk of field crops being a
source of ASFV for local pig farms [85].

Heat treatments and storage of crops and plant-based ingredients have demonstrated
experimental efficacy in reducing the infectivity of swine viruses such as ASFV and PEDV.
For example, Fischer et al. (2020) contaminated field crops, including wheat, barley, rye,
triticale, corn, and peas, with ASFV Armenia 2008 prior to subjecting the crops to a 2-h
drying period at 20 ◦C. After 2 h of storage at room temperature, no infectious virus could
be isolated from the unprocessed crops [86]. Stability of an ASFV isolate from the Russian
Federation was investigated at various temperatures in compound feed made primarily
of barley and wheat [87]. Results reported that infectious ASFV was undetectable in the
inoculated feed after 5 days at 22–25 ◦C and after 40 days at 4–6 ◦C. At temperatures
between –16 ◦C and –20 ◦C, infectious ASFV was detectable in the plant-based compound
feed for the entire length of the 60-day study [87].

Trudeau et al. (2017) reported the stability of PEDV, PDCoV, and transmissible gas-
troenteritis virus (TGEV) at 25 ◦C in porcine complete feed and several ingredients, in-
cluding spray-dried porcine plasma, meat meal, meat and bone meal, blood meal, corn,
soybean meal, and DDGS. At the conclusion of the 56-day study, infectious PEDV, PDCoV,
and TGEV were still detectable in all tested feeds and ingredients, with soybean meal main-
taining the highest titer of all three viruses [88]. Other work by the same group investigated
the heat treatment of PEDV-contaminated complete feed, reporting virus inactivation in
the feed after 25 min at 120 ◦C, 15 min at 130–140 ◦C, and 10 min at 145 ◦C [89]. Further,
significant titer reductions of PEDV in nine different contaminated feeds and ingredients
were reported after heat treatment using lower temperatures: after 30 min, a 2.4 log re-
duction at 60 ◦C, a 2.7 log reduction at 70 ◦C, a 3.4 log reduction at 80 ◦C, and a 3.9 log
reduction at 90 ◦C [90].

7. Chemical Mitigation Methods for ASFV in Feed

Feed additives with antimicrobial activity against ASFV and other swine viruses have
gained substantial interest in the wake of feed risk awareness and the need for antibiotic
alternatives [91]. Studies evaluating the efficacy of various chemical feed mitigants are
summarized in Table 2. Primary additive classes investigated for antiviral activity include
aqueous formaldehyde, medium-chain fatty acids, short-chain fatty acids, organic acids,
and essential oils. Mechanistically, these antimicrobial products inactivate viruses in
different ways and regulations on use vary by country. For example, medium-chain fatty
acids (MCFA) are believed to reduce virus infectivity by disrupting the viral envelope,
leading to deconstruction of the virion and an inability to bind to the host cell for entry [92].
A second example is aqueous formaldehyde, which is believed to reduce virus infectivity
through alkylation and cross-linking of viral nucleic acids and proteins [93].
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Table 2. Studies reporting the efficacy of various feed additives in mitigating the risk of porcine viruses in feed.

Pathogen Mitigant Composition Inclusion Rate Testing Method Outcome or Effects Reference

ASFV
Aqueous formaldehyde

and propionic acid,
MCFA (C6:C8:C10)

0.03–1.0%

Cell culture; tested in complete
feed and ingredients at mean

12.3 ◦C temperature in a 30-day
transoceanic shipment model

Dose-dependent inactivation;
reduced infectivity in feed

ingredients; decreased viral DNA
quantity in feed a

[94]

ASFV MCFA (C8:C10:C12);
GML 0.25–2.0%

Cell culture; complete feed
stored for 30 min or 1 day at

room temperature

Decreased virus titers in cell culture
by MCFA and GML; dose-dependent

antiviral activity by GML; reduced
infectivity in complete feed by GML

at ≥1.0%; no effect on viral DNA

[95]

PRRSV, SVA, PEDV

Aqueous formaldehyde,
organic acids, acidifiers,
HMTBa, SCFA, MCFA,

LCFA, GML, and
essential oils

0.1–3.0%
Ingestion of complete feed via

natural consumption for
15 days

Decreased clinical signs and virus
detection in biological samples;

increased weight gain b
[96]

PEDV Lactic acid 0.75–1.5% Stored in complete feed at
20 ◦C for 1 day Reduced infectivity in feed [97]

PEDV Aqueous formaldehyde
and propionic acid 0.33%

Stored in complete feed and
ingredients under winter

conditions (mean temperature
between −9 ◦C and −18 ◦C)

for 30 days

Reduced infectivity in feed and
ingredients; decreased viral RNA

quantity in feed
[98]

PEDV
Aqueous formaldehyde

and propionic acid;
MCFA (C6:C8:C10)

0.36–11.1%
Tested in rice hulls flushed

through feed manufacturing
equipment after complete feed

Decreased viral RNA quantity in rice
hull flush a [99]

PEDV Benzoic acid and
essential oils 0.02–0.5% Stored in complete feed for

42 days

Decreased viral RNA quantity in
feed on combination treatment with

both additives; no effect on virus
infectivity in feed

[100]

PEDV
Aqueous formaldehyde

and propionic acid;
MCFA (C6:C8:C10)

0.33–2.0%

Tested in complete feed and
ingredients at a mean 6.1 ◦C

temperature in a 37-day
transoceanic shipment model

Reduced infectivity in feed
ingredients; decreased viral RNA

quantity in feed a
[41]

PEDV Aqueous formaldehyde
and propionic acid 0.32%

Ingestion of complete feed via
natural consumption

for 14 days

Prevented transmission to pigs
through contaminated feed;

decreased viral RNA quantity in feed
[101]

PEDV
Organic acids, acidifiers,

sucrose, and sodium
chloride

0.2–0.4% Stored in complete feed at
25 ◦C for 21 days

Increased rate of virus decay in
complete feed c [89]

PEDV
Aqueous formaldehyde

and propionic acid;
MCFA (C6:C8:C10)

0.125–1.0% Stored in complete feed at
room temperature for 1 day

Reduced infectivity in feed;
dose-dependent decreased viral

RNA quantity in feed
[102]

PEDV MCFA (C6:C8:C10) 0.25–1.5%

Stored in complete feed at a
mean 25.8 ◦C temperature for

40 days pre-inoculation; stored
at room temperature for 3 days

post-inoculation

Dose-dependent decreased viral
RNA quantity in feed [103]

PDCoV
Organic acids, acidifiers,

sucrose, and sodium
chloride

Low: 0.2–3.0%
High: 0.4–6.0%

Stored in complete feed at
25 ◦C for 35 days

No effect at lower concentrations;
increased rate of virus decay in

complete feed at higher
concentrations d

[104]

Key: ASFV, African swine fever virus; PEDV, porcine epidemic diarrhea virus; PRRSV, porcine reproductive and respiratory syndrome
virus; SVA, Seneca virus A; SCFA, short-chain fatty acids; MCFA, medium-chain fatty acids; LCFA, long-chain fatty acids; GML, glycerol
monolaurate; HMTBa, methionine hydroxyl analogue. a Decreased nucleic acid quantity only associated with aqueous formaldehyde
or high MCFA (11.1%) treatment; b improved outcome not seen with Vigilex (oils, fermentation products, whey products, plant protein)
treatment; c increased rate of PEDV decay not seen after sodium chloride or Ultracid P (orthophosphoric, citric, fumaric, malic acids)
treatment; d increased rate of PDCoV decay not seen after treatment with high concentrations of sucrose or formic acid.

The efficacy of both MCFA and aqueous formaldehyde has been experimentally con-
firmed for ASFV. In Niederwerder et al. (2020), MCFA (1:1:1 ratio of C6, C8, and C10) and
aqueous formaldehyde (Sal CURB®) were investigated for their ability to inactivate or
reduce the infectivity of ASFV in cell culture and in feed under a transoceanic shipment
model [94]. In cell culture, dose–response curves were determined by adding MCFA or
aqueous formaldehyde at various inclusion rates (0.03–2.0%) to a standard volume of ASFV;
titration assays were performed to quantify ASFV remaining post-exposure to liquid addi-
tives. Results demonstrated a dose-dependent reduction in the ASFV titer after exposure to
either product, with inclusion rates defined for MCFA (0.70%) and formaldehyde (0.35%)
required to reduce ASFV below the level of detection in cell culture. In the transoceanic
model, MCFA and aqueous formaldehyde were tested against ASFV in nine different feed
ingredients: conventional soybean meal, organic soybean meal, soy oilcake, choline, moist
dog food, moist cat food, dry dog food, pork sausage casings, and complete feed in meal
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form. ASFV-contaminated ingredients were mixed with either MCFA (1.0% inclusion) or
aqueous formaldehyde (0.33% inclusion) during the 30-day model simulating shipment
conditions. Although all treated feed ingredients maintained detectable ASFV DNA on
PCR, results demonstrated reduced ASFV infectivity post-treatment, with most MCFA-
treated feed ingredients (16/18) and all formaldehyde-treated feed ingredients (18/18)
lacking infectious ASFV at the conclusion of the study [94]. Under the conditions of these
studies, both MCFA-and formaldehyde-based feed additives demonstrated efficacy in a
dose-dependent manner for reducing ASFV infectivity and show potential as mitigation
tools for reducing the risk of ASFV introduction and transmission through feed.

Several additional studies have confirmed the antiviral effects of MCFA, aqueous
formaldehyde, organic acids, and other additives against swine viruses endemic to the U.S.
(Table 2). Various testing methods have included culturing in vitro on cell lines, storing
at various time and temperature combinations, exposing to transoceanic shipment condi-
tions, flushing feed manufacturing equipment, and feeding through natural consumption.
For example, Dee et al. (2020) reported a robust analysis of 15 chemically diverse feed
additives for their efficacy against porcine reproductive and respiratory syndrome virus
(PRRSV), PEDV, and SVA through the natural consumption of contaminated complete
feed. Interestingly, all but one product (14/15; 93%) provided beneficial effects in terms
of the outcome, including reduced clinical signs, decreased virus detection in biological
samples, and increased average daily gain [96]. Taken together, both physical and chemical
treatments provide opportunities to reduce virus risks in feed; however, it is important to
note that most methods of mitigation do not eliminate ASFV DNA or other viral nucleic
acid from feed, underscoring the importance of determining virus biological infectivity
after mitigation is applied.

8. Conclusions

Experimental research has proven that ASFV is broadly stable across commonly im-
ported feed ingredients, transmission is possible through consumption of ASFV-contaminated
plant-based feed, and physical and chemical treatments of feed may mitigate the risk of
ASFV introduction. Epidemiological evidence has linked contaminated feed with ASFV
field outbreaks in both Europe and Asia. An expanding geographic distribution of ASFV
continues to increase the risk of U.S. incursion. With economic losses of ASFV introduction
into the U.S. swine herd estimated at >$15 billion due to production losses and market dis-
ruption, the importance of preventing entry cannot be overstated. As thousands of metric
tons of swine feed ingredients are imported each year into the U.S. from countries with
active ASF outbreaks, it is critically important that mitigation strategies be investigated
and adopted to reduce the risk of ASFV entry through this route.
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